1、根据函数特征,对lnx有x>0,对于根式有x≥0,综合得x>0,即函数的定义域为:(0,+∞)。
2、设A,B是两个非空的数集,如果岳蘖氽颐按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x像粜杵泳)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
3、 如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(旌忭檀挢x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
4、 二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
5、根据函数的性质,解析函数上部分点图表,同时根据函数的图像的定义域、单调性及凸凹性等性质,即可简要画出函数的图像示意图如下。