1、 函数的定义域,根据函数特征,有对数函数lnx,即要求真数部分为正数,所以定义域要求x>0。
2、定义域是指该函数的有效范围,函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。
3、函数的单调性:通过函数的一阶导数,求出函数驻点,由一阶导数的正负,判断函数的单调性,进而得到函数的单调区间。
4、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
5、函数凸凹性,求函数的二阶导数,判断函数的凸凹性并得到凸凹区间。
6、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
7、函数的极限:判断函数在正负无穷大处和不定义点处的极限。
8、函数五点示意图,通过列表列举函数上部分点示意图如下:
9、综合以上函数的定义域、单调性、凸凹性和极限等性质,函数的示意图如下。