1、函数y=14x-√5+3x为根式和一次函数的和函数,定义域需综合考虑,步骤如下:
2、 函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。
3、导数与函数单调性密切相关。特别是对于具体函数,利用导数求解函数单调性,思路清晰,步骤明确,既快捷又易于掌握。
4、判断函数y=14x-√5+3x的凸凹性,通过函数的二阶导数,解析函数的凸凹性,并求函数的凸凹区间。
5、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。