1、 根据对数函数的定义域要求,函数的真数部分为非负数,根据该不等式倦虺赳式的特征,可知不等式恒成立,即函数y的定义域为全体实数,即定义域为:(-∞,+∞)。
2、 简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。
3、计算出函数的一阶导数,通过函数的一阶导数,求出函数的单调区间。
4、函数的单调性也叫函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
5、函数的凸凹性,通过函数的二阶导数,解析函数的凸凹区间。
6、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍收墩芬蓥然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
7、函数的奇偶性,判断函数的奇偶性,由于函数f(-x)=f(x),即函数为偶函数,确定其对称性为关于y轴对称。
8、函数上的五点示意图。
9、函数的示意图,综合以上函数的定义域、单调性、凸凹性性、奇偶性和极限等性质,并结合函数的单调区间、凸凹区间,可画出函数的示意图如下: