1、 球坐标的绘图,用SphericalPlot3D。 举个例子:SphericalPlot3D[ 1 + 2 Cos[2 \[Theta]], {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi}]
2、 画三个同心半球:SphericalPlot3D[{1, 2, 3}, {\[Theta], 0, Pi}, {\[Phi], 0, Pi}, PlotPoints -> 30]
3、 再举一例,这次涉及到复变函数:SphericalPlot3D[Re[Sin[\[Theta]] Cos[\[Theta]] Exp[2 I*\[CurlyPhi]]], {\[Theta], 0, \[Pi]}, {\[CurlyPhi], 0, 2 \[Pi]}]
4、 绘图时,去掉坐标轴:SphericalPlot3D[ 1 + 2 Cos[2 \[Theta]], {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi}, Axes -> False]
5、 绘图时,去掉外框:SphericalPlot3D[{1, 2, 3}, {\[Theta], 0, Pi}, {\[Phi], 0, Pi},PlotPoints -> 30, Boxed -> False]
6、 绘图时,去掉网格线:SphericalPlot3D[Re[Sin[\[Theta]] Cos[\[Theta]] Exp[2 I*\[CurlyPhi]]], {\[Theta], 0, \[Pi]}, {\[CurlyPhi], 0, 2 \[Pi]}, Mesh -> None]
7、 红色,不透明,高光:SphericalPlot3D[1 + 2 Cos[2 \[Theta]], {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi},PlotStyle -> Directive[Red, Opacity[1], Specularity[White, 10]],Mesh -> None, PlotPoints -> 30, Axes -> False, Boxed -> False] 蓝色,半透明,高光:SphericalPlot3D[1 + 2 Cos[2 \[Theta]], {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi},PlotStyle -> Directive[Blue, Opacity[0.7], Specularity[White, 6]],Mesh -> None, PlotPoints -> 30, Axes -> False, Boxed -> False]
8、 绿色的半透明“仙人掌”:SphericalPlot3D[Re职邗珩垃[Sin[\[Theta]] Cos[\[Theta]] Exp[2 I*\[CurlyPhi]]], {\[Thet锾攒揉敫a], 0, Pi}, {\[CurlyPhi], 0, 2 Pi},PlotStyle -> Directive[Green, Opacity[0.5], Specularity[White, 6]],Mesh -> None, PlotPoints -> 30, Axes -> False, Boxed -> False]
9、 五个楞的“什么瓜”:SphericalPlot3D[1 + Sin[5 \[Phi]]/5, {\[Theta], 0, Pi}, {\[Phi], 0, 2 P足毂忍珩i},PlotStyle -> Directive[Green, Opacity[0.5], Specularity[White, 10]],Mesh -> None, PlotPoints -> 30, Axes -> False, Boxed -> False]
10、 色彩渐变:SphericalPlot3D[Re[Sin[\[哌囿亡噱Theta]] Cos[\[Theta]] Exp[2 I*\[CurlyPhi]]], {\[Thet锾攒揉敫a], 0, Pi}, {\[CurlyPhi], 0, 2 Pi},ColorFunction -> (ColorData["Rainbow"][#6] &), Mesh -> None,PlotPoints -> 25, Boxed -> False, Axes -> False] 和SphericalPlot3D[1 + Sin[5 \[Phi]]/5, {\[Theta], 0, Pi}, {\[Phi], 0, 2 Pi},ColorFunction -> (ColorData["Rainbow"][#6] &), Mesh -> None,PlotPoints -> 25, Boxed -> False, Axes -> False]