手抄报 安全手抄报 手抄报内容 手抄报图片 英语手抄报 清明节手抄报 节约用水手抄报

函数有界性的判断有哪些

时间:2024-10-14 11:21:00

方法有3个:

1、理论法:若f(x)在定义域[a,b]上连续,或者放宽到常义可积(有限个第一类间断点),则f(x)在[a,b]上必然有界。

2、计算法:切分(a,b)内连续

limx→a+f(x)存在limx→a+f(x)存在;limx→b−f(x)存在limx→b−f(x)存在则f(x)在定义域[a,b]内有界。

3、运算规则判定:在边界极限不存在时

有界函数±±有界函数 = 有界函数 (有限个,基本不会有无穷个,无穷是个难分高低的状态)有界 x 有界 = 有界。

函数有界性的判断有哪些

扩展资料:

函数值在某一个有限的范围内,即L1≤y≤L2,其中L1;L2是常数。

注意:

①L1为下界,L2为上界

②上界与下界同时存在才称之为有界

③要看清楚题目中所给的范围

例如

(1)y=sin x 在定义域上是有界的。因为其对应的函数值都会满足:-1≤y≤1。

(2)y=ln x在定义域上是无界的。因为其对应的函数值都会满足:y∈R。

但在定义域内的任何一个有限区间。如 (1,5)上,函数则是有界的。因为其对应的函数值都会满足:0<y<ln 5。

参考资料:百度百科-有界性定理

© 手抄报圈